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Abstract We investigate the phylogeography of California
(Zalophus californianus) and Galápagos (Z. wollebaeki) sea
lions and describe within-population structure for the
California sea lion based on mitochondrial DNA. Fifty
control-region haplotypes were found, 41 from Z. californi-
anus and 9 from Z. wollebaeki, with three Wxed diVerences
between the two species. Ranked population boundaries
along the range of Z. californianus were deWned based on
the Monmonier Maximum DiVerence Algorithm, resulting
in Wve genetically distinct populations, two in the PaciWc
Ocean and three inside the Gulf of California. A Minimum
Spanning Network showed a strong phylogeographic signal

with two well-deWned clusters, Z. californianus and Z. wol-
lebaeki, separated by six base-pair diVerences, supporting
the existence of two genetically distinct species with an
estimated divergence time of »0.8 Ma. Results are dis-
cussed in the context of the historical geologic and paleoce-
anographic events of the last 1 Ma in the eastern PaciWc.

Introduction

California sea lions (Zalophus californianus, Lesson 1828)
are distributed along the mainland and oVshore islands of
the eastern North PaciWc Ocean from British Columbia,
Canada, to central México, including the Gulf of California
(King 1983). The species is occasionally recorded outside
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of its normal range, as far as Alaska to the north (Manisc-
alco et al. 2004) and southern México to the south (Gallo-
Reynoso and Solórzano-Velasco 1991). There are four
main breeding rookeries in the United States, on San Mig-
uel, Santa Barbara, San Nicolas, and San Clemente islands
(Lowry et al. 1992). In México, there are 19 main breeding
rookeries, from the Coronado Islands to Margarita Island
along the PaciWc coast (Le Boeuf et al. 1983) and from
Rocas Consag to Los Islotes in the Gulf of California
(Aurioles-Gamboa and Zavala-González 1994; Fig. 1). For
management purposes there are three currently recognized
stocks deWned by the geographic location of their reproduc-
tive core areas (Lowry et al. 1992). The “United States”
stock extends northward of the México–United States bor-
der, including Canada and Alaska, with a reproductive cen-
ter at the Channel Islands in Southern California and an
estimated population size of 238,000–241,000 (Lowry and
Maravilla-Chávez 2002). The “Western Baja California”
stock extends southward from the México–United States
border to the tip of the Baja California peninsula, with its
reproductive center at islands near Punta Eugenia and at
Santa Margarita Island and an estimated population size of
75,000–85,000 (Lowry and Maravilla-Chávez 2002). The
“Gulf of California” stock has its reproductive center at
islands located within the central and northern portions of
the Gulf of California and has an estimated population size
of 31,393 (Aurioles-Gamboa and Zavala-González 1994).

Despite being one of the most common marine mammals
in the eastern North PaciWc, little is known about the
genetic relationships among California sea lion rookeries.
While there is clear evidence of genetic diVerentiation

between geographically isolated rookeries in the PaciWc
Ocean and the Gulf of California (Maldonado et al. 1995;
Bowen et al. 2006), the picture is complicated by the fact
that males (at least within PaciWc populations) undertake
extensive seasonal migrations and individuals of both sexes
are capable of moving between rookeries (Bartholomew
1967; Aurioles-Gamboa et al. 1983; M. S. Lowry unpub-
lished data), although the rate of exchange among them is
unknown.

Galápagos sea lions (Zalophus wollebaeki, Sivertsen
1953) are endemic and common throughout the Galápagos
Archipelago, although major rookeries in the central and
southern islands (Floreana, Santa Cruz, San Cristóbal,
Isabela, Santiago, Española, Mosquera, Santa Fé, and
Fernandina) represent almost 90% of the population, which
is currently estimated at 16,000–18,000 animals (Salazar
2002; Salazar and Michuy 2008). Despite their smaller
geographic range and lack of an established migration,
Galápagos sea lions are capable of long-range movements.
Vagrant individuals are occasionally reported oV the
Central and South American coasts as far as 1,570 km from
their population center (Palacios et al. 1997; Capella et al.
2002).

After the Galápagos sea lion was described, a close rela-
tionship with the California sea lion was assumed. How-
ever, the taxonomic designation has been controversial.
While most researchers support a species-level separation
based on diVerences in cranial morphometrics (Sivertsen
1953, 1954), social behavior (Eibl-Eibesfeldt 1984), vocal-
izations (Cenami Spada et al. 1991) and molecular genetics
(Wolf et al. 2007), a recent taxonomic review of the family
Otariidae based on cranial morphometry supported division
of the two taxa only at the subspeciWc level (Brunner 2004).
In this study, we investigate variation in mitochondrial
DNA (mtDNA) throughout the entire breeding range of
both California and Galápagos sea lions and make phyloge-
ographic inferences to help explain their current distribu-
tion and degree of taxonomic diVerentiation. Further, we
examine the level of genetic structuring among California
sea lion rookeries to identify distinct population units that
can lead to improved management practices.

Materials and methods

Samples

A total of 299 tissue samples were collected in California,
USA (n = 82 from 2 islands, from 1996 to 1998), México
(n = 170 from 5 islands along the PaciWc coast and 6 islands
in the Gulf of California, during 1997) and the Galápagos
Islands, Ecuador (n = 47 from 8 islands, in 1998 and 1999)
(see Figs. 1, 2 for sampling sites). Animals were sampled

Fig. 1 Geographic location and number in parenthesis of Z. califor-
nianus samples collected from California and México. Rocas Consag
(no samples) is shown because it is the northernmost rookery in the
Gulf of California
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by clipping a small piece of skin from the hind limbs. Live
pups were sampled in México, while stranded dead pups or
yearlings were sampled in California, and dead individuals
from all age categories were sampled in Galápagos. Sam-
ples of California sea lions were collected from a single
rookery on each island except for San Miguel (several sites
along a 3-km stretch of coastline) and San Nicolas (two
sites). In total, we deWned 13 sampling strata for California
sea lions. Galápagos samples were obtained from 17 sites
on 9 diVerent islands (Fig. 2). Due to the low sample size
per site, we combined these samples into one stratum for all
Galápagos rookeries.

Samples were either stored in liquid nitrogen in the Weld,
later transferred to an ultrafreezer, and kept at ¡70°C or in
an aqueous solution of 20% (v/v) DMSO saturated with
NaCl (Amos and Hoelzel 1991) and kept at ¡40°C until
DNA extraction.

DNA extraction

Samples (40 mg) were digested for 20 h at room tempera-
ture in 40 �L of Proteinase K (10 mg/mL, SIGMA or Gibco
BRL), 400 �L extraction buVer (0.1 M NaCl, 10 mM Tris–
HCl pH 8.0, 1 mM EDTA), and 40 �L 10% SDS. The DNA
was puriWed by standard phenol–chloroform–isoamyl alco-
hol (25:24:1) extractions (modiWed from Sambrook et al.
1989). The precipitate was resuspended in Tris–EDTA
buVer (10 mM Tris–HCl pH 8.0, 1 mM EDTA) to an aver-
age concentration of 150 ng/�L. The quality of the DNA
was examined via electrophoresis on 1% agarose gels using
»150 ng of DNA.

AmpliWcation and sequencing

A mtDNA fragment of »550 base pairs (bp) from the
hypervariable region I of the control region was ampliWed
from the 299 individuals using the polymerase chain reac-
tion (PCR). Two primers developed by the Marine Mam-
mal Genetic Group at the Southwest Fisheries Science
Center (SWFSC), La Jolla, California, were used. The
Tro primer (5�-CCTCCCTAAGACTCAAGG-3�) anneals
between the tRNA threonine gene and the tRNA proline
gene (L-strand) and the Dx primer (5�-CCTGAAGTA
AGAAACCAGATG 3�) anneals within the conserved
domain of the control region (H-strand). Reactions were
performed in 25 �L volumes, containing: »20 ng of geno-
mic DNA, 20 mM Tris–HCl pH 8.4, 50 mM KCl, 3 mM
MgCl2, 200 �M of each dNTP, 0.3 �M of each primer and
1 U of Taq DNA polymerase (Gibco BRL). The thermal
cycling proWle was as follows: an initial hot-start of 5 min
at 94°C; 35 ampliWcation cycles of denaturation for 1 min
at 94°C, annealing for 1 min at 50°C and extension for
1.5 min, with a 2 s increase per cycle, at 70°C, and a Wnal
5 min incubation at 70°C to ensure complete extension of
the PCR products.

Successful ampliWcation products were then cleaned by
puriWcation columns (Concert™ Rapid PCR PuriWcation
System, Gibco BRL) according to the manufacturers’ spec-
iWcations. Both heavy and light strands were cycle-
sequenced using the BigDye® Terminator Sequencing Stan-
dard (Applied Biosystems Inc.). Reactions were performed
in 12 �L volumes, containing: 60–100 ng of double-
stranded cleaned PCR product, 0.25 �M of one primer and
2 �L of terminator ready-reaction mix. The thermal cycling
proWle included an initial hot-start of 5 min at 95°C, fol-
lowed by 25 cycles of denaturation for 30 s at 95°C, anneal-
ing for 15 s at 50°C, extension for 4 min at 60°C and a Wnal
2 min incubation at 60°C to ensure complete extension of
the PCR products. Sequenced products were puriWed by
ethanol precipitation and then run on an ABI 377 DNA
automated sequencer.

Data analyses

Editing of opposite strands was performed simultaneously
using Sequencher™ version 4.1 software to produce
383 bp-long sequences. Initial sequence comparisons and
measures of variability were performed using MEGA version
2.1 (Kumar et al. 2001). Final sequences were compared
with the complete mitochondrial genome of the harbor seal
(Phoca vitulina) from GenBank accession number NC
001325 (Arnason and Johnsson 1992) as a reference. Hap-
lotype (h) and nucleotide (�) diversity was estimated, and
Tajima’s test of neutrality was performed on both groups of
samples (California and Galápagos), and on each putative

Fig. 2 Geographic location of 47 Z. wollebaeki samples collected
from 17 diVerent sites on nine islands of the Galápagos Archipelago
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population within California samples using Arlequin,
version 2.0 (Schneider et al. 2001).

The phylogeographic structure was analyzed by compar-
ing phylogenetic relationships among unique haplotypes
and the geographic location of each haplotype. Phyloge-
netic relationships were inferred from a Minimum Span-
ning Network (MSN) of all haplotypes. The number of
pairwise nucleotide diVerences among haplotypes was used
in Minspnet (ExcoYer and Smouse 1994) to derive the
MSN. Because there were no shared haplotypes between
California and Galápagos samples (see “Results”), and
because of the number and type of mutations separating
these clusters in the MSN were both indicative of species-
level diVerentiation, the Galápagos samples were excluded
from analyses of population genetic structure within
California sea lions.

Steller sea lion (Eumetopias jubatus), the sister taxon to
Zalophus and its closest extant relative in the North PaciWc
(Wynen et al. 2001; Deméré et al. 2003), was used as a
calibration point to estimate the minimum time of genetic
divergence between Z. californianus and Z. wollebaeki.
First, the three most divergent sequences in the E. jubatus
were chosen from GenBank and compared to three of the
most divergent Z. californianus sequences from the present
study. The mean divergence time between Z. californianus
and E. jubatus was then estimated based on the mean
D-loop sequence divergence rate for marine mammals
(3.25% per million years (My); i.e., the mean between the
divergence rate in cetaceans (0.5% per My) and that in ele-
phant seals (»6% per My); Stewart and Baker 1994). The
procedure was then repeated for the three most divergent
sequences of Z. californianus and Z. wollebaeki to estimate
the minimum mean genetic divergence time between the
two.

To assess the extent of genetic structure within Califor-
nia sea lions, the Monmonier Maximum DiVerence Algo-
rithm (MMDA; Manel et al. 2003) was used to determine,
in a ranked order, potential boundaries separating putative
populations. First, the 13 sampling strata were placed on a
Delaunay network (Brassel and Reif 1979) connecting
adjacent sampling strata. The MMDA was then imple-
mented in the Barrier version 2.2 program (Manni et al.
2004), using Nei’s Da genetic distance between mtDNA
haplotypes as a measure of genetic distance among the 13
sampling strata. The resultant putative populations deWned
by these potential and ranked boundaries were then tested
using an analysis of molecular variance (AMOVA;
ExcoYer et al. 1992) implemented in Arlequin version 2.0
(Schneider et al. 2001). AMOVA was performed to esti-
mate F-statistics and their analogue �-statistics. For �ST,
the genetic distance between pairs of haplotypes was esti-
mated as the proportion of the nucleotide diVerences
between them. The null distribution of pairwaise FST and

�ST values under the hypothesis of panmixia was obtained
by 16,000 permutations of haplotypes between populations,
guaranteeing less than 1% diVerence with the exact proba-
bility in 99% of the cases (Guo and Thomson 1992). The
Wnal number of populations was determined as that which
resulted in statistically signiWcant diVerentiation between
all pairs of adjacent populations when using the largest
number, in their ranked order, of potential boundaries.

Results

Genetic diversity and neutrality

Fifty haplotypes were found; fourty-one speciWc to Z. cali-
fornianus and nine speciWc to Z. wollebaeki (Table 1).
Twenty-nine sites were variable, with 28 transitions and a
single transversion. The 50 diVerent haplotypes were
deposited in the GenBank database under accession num-
bers EF512168 to EF512217. Overall haplotype diversity
for California sea lions was h = 0.8860 § 0.0123. The low-
est values were found in the “PaciWc Temperate”
(h = 0.6712 § 0.0404) and in the Galápagos (h = 0.7604 §
0.521) populations (Table 2; see “Population Structure”
section for population deWnitions). Overall nucleotide
diversity from California sea lions was � = 0.0088 §
0.0050. The lowest value was found in Galápagos
(� = 0.0037 § 0.0026); this value was almost half that of
the nearest lowest values (“PaciWc Temperate” and “South-
ern Gulf”; Table 2). The null hypothesis of neutrality
was not rejected; in all cases, Tajima’s D-statistics were
statistically non-signiWcant (P > 0.3, Table 2). No shared
haplotypes were found between samples collected from
Z. californianus and Z. wollebaeki (Table 1). A unique
transversion (site number 214, Table 1) and two transitions
(sites 233 and 234, Table 1) represented Wxed diVerences
that distinguished Galápagos from California samples.

Phylogeographic structure and divergence time

The MSN showed a strong phylogeographic signal, with
two distinct clusters corresponding to California (haplotypes
H1–H41) and Galápagos (haplotypes H42–H50) sea lions
(upper and lower clusters in Fig. 3, respectively). Haplotype
H1 was the most common one, with the highest number of
connections, followed by H29 and H34. Galápagos haplo-
types (H42–H50) were grouped together and separated from
California haplotypes by six mutations (Fig. 3). The Galápa-
gos haplotype cluster had fewer reticulations than the Cali-
fornia cluster (Fig. 3). In the latter, common haplotypes and
haplotypes with high numbers of connections occurred more
frequently in the PaciWc populations (“PaciWc Temperate”
and “PaciWc Subtropical”; Fig. 4). Peripheral and private
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haplotypes occurred most frequently in “Northern Gulf” and
“Central Gulf” populations, with whole haplotype clusters
present only in the Gulf of California (Fig. 4). Despite their
lower sample sizes, Gulf populations showed higher haplo-
type diversities (Table 2). Very few haplotypes were shared
between all populations (Fig. 4).

The three most divergent sequences for E. jubatus
(GenBank accession numbers AY340888, AY340917 and

AY340937; Baker et al. 2005) and for Z. californianus
(haplotypes 1, 29 and 35 from the present study) yielded a
mean sequence divergence of 9.9% between the two genera
and a mean genetic divergence time of 3.05 million years
ago (Ma) (using the 3.25% per My mean D-loop sequence
divergence rate for marine mammals). Based on this esti-
mate, the three most divergent Z. californianus and Z. wol-
lebaeki sequences (haplotypes 42, 47 and 50) yielded a

Table 1 List of 50 haplotypes deWned by 29 variable sites on the basis of 383 bp of the hypervariable region I of mitochondrial DNA of Z. cali-
fornianus (H01–H41) and Z. wollebaeki (H42–H50)

Site No.1 of the complete sequence is equivalent to site No.16304 of the harbor seal (Phoca vitulina) sequence by Arnason and Johnsson (1992);
GenBank accession number: NC 001325. A transversion in site number 214 and two transitions (233, 234) are Wxed diVerences that distinguished
Z. wollebaeki from Z. californianus haplotypes

 rebmuN etiS

Haplotype
4
3

7
3

9
2

1
1
2

1
1
9

1
2
6

1
3
3

1
4
3

1
4
4

1
4
8

2
1
2

2
1
4

2
1
5

2
2
0

2
2
2

2
2
6

2
3
2

2
3
3

2
3
4

2
3
8

2
3
9

2
4
2

2
4
4

2
4
5

2
4
7

2
5
3

2
6
5

2
7
4

3
4
1

H01 C T T G T T A G A T  T A T C C T A A C T  T T C A A T A G T
H02 • • • • • • • • • •  • • • • T • • • • •  • • • • • • • • • 
H03 • • • • • C • • • •  • • • • • • • • • •  • • • • • • • • • 
H04  • • • • • • • • •  • • • • • • • • • •  • • • • • C • • • 
H05 • • • • • • • • G •  • • • • • • • • • •  • • • • • • • • • 
H06 • • • • • • G • G •  • • • • • • • • • •  • • • • • • • • • 
H07 • • • • • • G • • •  • • • • • • • • • •  • • • • • • • • • 
H08 • • • • • • • A • •  • • • • • C • • • •  • • • • • • • • • 
H09 • • • • • • • • • •  • • • • • C • • • •  • • • • • • • • • 
H10 • • • • • • • • G •  • • • • • • • • • •  • • • • • • • • C
H11 • • • • • • • • • •  • • • • • • • • • •  • • • • • • • • C
H12 • • • • • • • A • •  • • • • • • • • • •  • • • • • • • • C
H13 • • • • • • • A • •  • • • • • • • • • •  • • • • • • • • • 
H14 • • • • • • G A • C  • • • • • • • • • •  • • • • • • • • • 
H15 • • • • • • G A • •  • • • • • • • • • •  • • • • • • • • • 
H16 T • • • • • • A • •  • • • • • • • • • •  • • • G • C • • • 
H17 T • • • • C • A • •  • • C • • • • • • •  • • • • • C • • • 
H18 T • • • • C • A • •  • • C • • • G • • •  • • • • • C • • • 
H19 T • C • • C • A • •  • • C • • C • • • •  • • • • • C • • • 
H20 T • • • • • • A • •  • • C • • • • • • •  • • • • • C • • • 
H21 T • • • • • G A • •  • • C • • • • • • •  • • • • • C • • • 
H22 T • • • • • G A • C  • • C • • • • • • •  • • • • • • • • • 
H23 T • • • • • G A • •  • • • • • • • • • •  • • • • G • • A • 
H24 T • • • • • G A • •  • • • • • • • • • •  • • • • • • • A • 
H25 • • • • • • • A G •  • • • • • • • • • •  • • • • • • • • • 
H26 • • • • • C • A G •  • • • • • • • • • •  • • • • • • • • • 
H27 T • • • • C • A G •  • • • • • • • • • •  • • • • • • • • • 
H28 T • • • • C • A • •  • • • • • • • • • •  • • • • • C • • • 
H29 T • • • • • • A G •  • • • • • • • • • •  • • • • • C • • • 
H30 T • • • C • • A G •  • • • • • • • • • •  • • • • • C • • • 
H31 T • • • • • G A G •  • • • • • • • • • •  • • • • • C • • • 
H32 T • • • • C G A G •  • • • • • • • • • •  • • • • • C • • • 
H33 T • • • • C • A G •  • • • • • • • • • •  • • • G • C • • • 
H34 T • • • • C • A G •  • • • • • • • • • •  • • • • • C • • • 
H35 • • • • • • G A G •  • • C • • • • • • •  • • • • • C • • • 
H36 • • • • • • G A G •  • • C • • • • • • •  • • • • • C • • C
H37 • • • • • • G A G •  • • • • • • G • • •  • • • • • C G • • 
H38 • • • • • • G A G •  • • • • • • G • • C  • • • • • C G • • 
H39 • • • • • • G A G •  • • C • • C • • • •  • • • • • C G • • 
H40 • • • A • • G A G •  • • • • • • • • • •  • C • • • C • • • 
H41 • • • A • • G A G •  • • • • • • • • • •  • C • • • C • • C
H42 • • • • • • G A G •  • C • • • • • G T C  • C • • G C • • • 
H43 • • • • • • G A G •  • C • • • • • G T C  C C • • G C • • • 
H44 • • • • • • G • G •  • C • • • • • G T C  • C • • G C G • • 
H45 • • • • • • G • G •  • C • • • • • G T C  • C • • G C • • • 
H46 • • • • • • G • G •  • C • • T • • G T C  • C • • G C • • • 
H47 • • • • • • G A G •  • C • • T • • G T C  • C • • G C • • • 
H48 • C • • • • G A G •  • C • • T • • G T C  • C • • G C • • • 
H49 • • • • • • G A G •  C C • • T • • G T C  • C T • G C • • • 
H50 • • • • • • G A G •  C C • T T • • G T C  • C T • G C • • • 
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mean divergence of 2.6% and a minimum mean divergence
time of 0.8 Ma.

Population structure

When the Wrst four potential boundaries produced by the
MMDA were used, overall AMOVA results for the result-
ing Wve putative populations were statistically signiWcant
for both Wxation indexes (FST = 0.135, P < 0.001;
�ST = 0.135, P < 0.001). Additionally, all pairwise compar-
isons showed statistically signiWcant diVerences among the
Wve populations for both FST and �ST values (Table 3).
Based on the approximate geographic range of each of
these populations, we name them: “PaciWc Temperate”
(comprising San Miguel, San Nicolas and Coronados
islands), “PaciWc Subtropical” (including Benito, Cedros,
Asunción, and Margarita islands), “Southern Gulf” (Los
Islotes), “Central Gulf” (comprising San Esteban Island and
Los Cantiles rookery on Ángel de la Guarda Island), and
“Northern Gulf” (including Granito, Lobos and San Jorge
islands) (see Fig. 1).

Discussion

Genetic diversity and neutrality

All substitutions in California sea lion haplotypes were
transitions, in agreement with values reported for control
region sequences from nine other species of Otariidae, all
of which showed values for transitions >90% (Wynen et al.
2001), but higher than in a previous California sea lion
study that reported 71% transitions (Maldonado et al.
1995).

The overall haplotype diversity among Z. californianus
samples (h = 0.8860) fell among the values reported for

E. jubatus (h = 0.927, Bickham et al. 1996), Callorhinus
ursinus (h = 0.994, Dickerson et al. 2008) and the Guada-
lupe fur seal (Arctocephalus townsendi) (h = 0.798, Weber
et al. 2004). Similarly, nucleotide diversity for Z. californi-
anus (� = 0.0088) was comparable to that reported for other
species of sea lions, such as E. jubatus (� = 0.004), Otaria
byronia (� = 0.008), and Phocartos hookeri (� = 0.004)
(Wynen et al. 2001). The lowest haplotype and nucleotide
diversity values were found in the “PaciWc Temperate” and
in the Galápagos samples (Table 2), despite the fact that
these were the only strata where samples were collected
from more than one site per island and in more than 1 year.

This low genetic diversity may be related to a possible
founder eVect or to historical events that could have
reduced the populations, such as strong El Niño events,
disease epidemics or commercial harvesting. For instance,
there is archeological evidence that the San Miguel Island
(“PaciWc Temperate”) population was considerably smaller
(“rare”) between 1425 and 1500 AD than it is today
(Walker et al. 1999), suggesting this rookery may have
been colonized only in the last few centuries. Faunal
remains from archaeological sites on San Miguel Island are
of particular importance in this respect since they are the
only source of information currently available concerning
the recent history. However, since faunal remains are a
product of human subsistence activity, they cannot be con-
sidered an unbiased sample of the sea mammal populations
living prehistorically in the vicinity of San Miguel Island
(Walker and Craig 1979). In more recent times, commercial
harvesting in Southern California and the Mexican PaciWc
reduced these populations to only about 1,500 animals by
the 1920s (Heath 2002), while harvesting in the Gulf of
California was not as intensive (Lluch-Belda 1969; Zavala-
González and Mellink 2000). In addition, all PaciWc coast
rookeries are exposed to dramatic population Xuctuations
associated with recurring El Niño events (DeLong et al.

Table 2 Measures of genetic diversity (§SD) and the results of Tajima’s neutrality test by population, and totals for Z. californianus and Z. wol-
lebaeki

“PaciWc Temperate” includes San Miguel, San Nicolas, and Coronados islands. “PaciWc Subtropical” includes Benito, Cedros, Asunción, and
Margarita islands. “Southern Gulf” includes Islotes. “Central Gulf” includes Esteban Island and Cantiles rookery on Ángel de la Guarda Island.
“Northern Gulf” includes Granito, Lobos, and San Jorge islands

PS = Polymorphic sites

Population No. of 
samples

No. of 
haplotypes (PS)

Haplotype 
diversity (h) (%)

Nucleotide 
diversity (�) (%)

Tajima’s D statistic

PaciWc Temperate 94 10 (9) 67.12 § 4.04 0.64 § 0.39 0.9647 P = 0.854

PaciWc Subtropical 67 11 (10) 81.73 § 2.47 0.81 § 0.47 1.3157 P = 0.910

Southern Gulf 16 9 (6) 88.33 § 6.12 0.62 § 0.40 1.0730 P = 0.873

Central Gulf 27 12 (12) 87.46 § 5.13 0.82 § 0.49 0.0099 P = 0.556

Northern Gulf 48 19 (16) 93.09 § 1.68 1.09 § 0.61 0.4770 P = 0.725

Total (Z. californianus) 252 41 (21) 88.60 § 1.23 0.88 § 0.50 ¡0.0621 P = 0.543

Z. wollebaeki 47 9 (8) 76.04 § 5.21 0.37 § 0.26 ¡0.6008 P = 0.314
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1991; Boness et al. 1991; Francis and Heath 1991; Morris
et al. 1999), in contrast to the Gulf of California, where
populations are relatively protected (Aurioles-Gamboa and
Le Boeuf 1991; Hernández-Camacho et al. 2008a). For
example, in the islands of the Southern California Bight
during the 1982–1983 El Niño, births decreased 30% at San
Miguel Island, 43% at San Nicolas Island, 62% at San
Clemente Island, and 71% at Santa Barbara Island (DeLong
et al. 1991). The eVects of El Niño are also pervasive in
Galápagos, where population declines >30% and pup mor-
talities >90% have been documented during the 1982–1983
(Trillmich and Limberger 1985; Trillmich and Dellinger
1991) and 1997–1998 (Salazar and Bustamante 2003)
strong events.

Phylogeography of Zalophus

A strong phylogeographic signal with two well-deWned
clusters separated by six mutations in the MSN supported
the existence of two species, Z. californianus and Z. wol-
lebaeki. Our estimated mean genetic divergence time
between Eumetopias and Zalophus of 3.05 Ma fell within
the 95% conWdence interval (1.57–3.06 Ma) for the mini-
mum divergence time of 2.25 Ma reported by Harlin-Cog-
nato et al. (2006) for these two taxa. Based on this value,
the estimated time of genetic divergence between Z. cali-
fornianus and Z. wollebaeki is 0.8 Ma, which is three times
lower than the 2.3 § 0.5 Ma recently estimated by Wolf
et al. (2007). This discrepancy may be due to diVerences in
the calibration value used or to the diVerent number of Wxed
diVerences detected in each study (nine in Wolf et al. 2007
versus three in the present study; see Hey 1991), which, in
turn, may be due to the larger and more geographically rep-
resentative sample size evaluated in our study. In particular,
the closest haplotypes to Z. wollebaeki (H40 and H41) were
found only in samples from the “Northern Gulf” and “Cen-
tral Gulf” populations, which were not represented in Wolf
et al. (2007). We emphasize, however, that our estimate is
only an approximation that suggests a more recent time of
divergence; the inexact mutation rate used in our study and

Fig. 3 Minimum Spanning Network for 41 haplotypes of Z. californi-
anus (252 samples) and 9 haplotypes (H42–H50) of Z. wollebaeki (47
samples). Each circle represents a haplotype; inside are its number and
frequency (in parenthesis). The small circles represent one individual.
The transverse marks between haplotypes indicate the number of muta-
tions between them. Straight lines represent direct relations and curved
lines are alternative relations

Fig. 4 Geographic representation of the Minimum Spanning Net-
works for the Wve populations of Z. californianus. The “PaciWc Tem-
perate” population includes San Miguel, San Nicolas, and Coronados
islands; “PaciWc Subtropical” comprises Benito, Cedros, Asunción,
and Santa Margarita islands; “Southern Gulf” is represented by Los
Islotes; “Central Gulf” includes San Esteban Island and Los Cantiles
rookery on Ángel de la Guarda Island; “Northern Gulf” comprises
Granito, Lobos, and San Jorge islands. The arrangement of haplotypes
corresponds to that in Fig. 3, with Wlled circles representing the
haplotypes found in that population
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the very limited representation of Zalophus in the fossil
record (see Deméré et al. 2003; Ho et al. 2005) do not allow
a more constrained value. Additionally, the need for a good
fossil dating will be necessary to more accurately trace the
evolutionary history of pinnipeds.

The historical process by which Zalophus sea lions
arrived in the Galápagos Islands and became a distinct spe-
cies remains highly conjectural. The basal otariinae evolved
in the temperate eastern North PaciWc in the middle Miocene
(before 11 Ma) and it is generally assumed that they dis-
persed into the Southern Hemisphere (in one or multiple
waves) in the late Pliocene/early Pleistocene (»2–3 Ma), via
a cool-water pathway known as the East PaciWc Corridor
connecting the California and Perú currents (Davies 1958;
Repenning et al. 1979; Deméré et al. 2003). This dispersal
event, which is consistent with cooling and very high levels
of biological productivity in the tropics at the time (Lawrence
et al. 2006), likely culminated in the origin of the three
genera of present-day Southern Hemisphere otariinae
(Otaria, Phocarctos, Neophoca). In an analogous manner,
we suggest that the establishment of Z. wollebaeki as a distinct
species in Galápagos occurred later in the Pleistocene.

A determining factor for the colonization of the Galápagos
by a large predator like Zalophus must have been the
availability of suitable foraging habitat and adequate prey
base. Unlike the extensive and relatively more stable conti-
nental shelves, which support ample Wsh and cephalopod
biomasses, the Galápagos are the product of hotspot volca-
nism with a complex history of emergence and submer-
gence. The age of the present-day Galápagos has been
estimated at between 0.3 Ma for Fernandina Island in the
west and 6.3 Ma for San Cristóbal Island in the east (Geist
1996), although now-drowned but once-emergent volca-
noes have been dated at 5–14 Ma (Christie et al. 1992;

Werner et al. 1999). This process would have provided the
stepping stones for the persistence and evolution of the
unique Galápagos terrestrial biota (Rassmann 1997; Grehan
2001; Beheregaray et al. 2004), but would not have been
conducive to the development of a marine ecosystem capa-
ble of supporting a large biomass of epipelagic and demer-
sal prey until a conWguration similar to the present-day
Archipelago was reached. Further, while cool upwelling
and high oceanic productivity characterized the glacial
periods of the Pleistocene (1.8–0.01 Ma) (Lawrence et al.
2006; Lea et al. 2006; Koutavas and Sachs 2008), sea level
was 100–125 m below present, such that most of the shal-
low shelves connecting the islands, where most foraging by
sea lions takes place today (Villegas-Amtmann et al. 2008),
were exposed (see Fig. 2 in Geist 1996). For these reasons,
the successful colonization and establishment of a distinct
Zalophus form in Galápagos may have only occurred in the
middle–late Pleistocene. Indeed, speciation in other central-
place foraging marine predators of Galápagos appears to
have occurred very recently (»0.5 Ma) (Browne et al.
1997; Akst et al. 2002; Friesen et al. 2002).

The phylogeographic signal from the presence/absence
of haplotypes in the MSN (Fig. 4) also reveals information
about the origin and history of Z. californianus populations.
All regions presented haplotype H1 as well as haplotypes
derived from it, indicating that this haplotype was present
in the ancestral population (Crandall and Templeton 1993;
ExcoYer and Smouse 1994). In contrast, haplotypes H29
and H34 (second and third most common haplotypes) only
occurred in the “PaciWc Temperate” and “PaciWc Subtropi-
cal” populations, revealing a strong separation between
populations in the PaciWc Ocean and in the Gulf of California.
However, the “Northern Gulf” and “Central Gulf”
populations were characterized by whole clusters of private

Table 3 Pairwise FST and �ST values (lower matrix) for comparisons among Wve populations: “PaciWc Temperate” includes San Miguel, San
Nicolas, and Coronados islands

“PaciWc Subtropical” includes Benito, Cedros, Asunción, and Margarita islands. “Southern Gulf” includes Islotes. “Central Gulf” includes Esteban
Island and Cantiles rookery on Ángel de la Guarda Island. “Northern Gulf” includes Granito, Lobos, and San Jorge islands

Corresponding P values (upper matrix) were calculated from 16,000 random permutation tests. The null hypothesis of panmixia (no structure) was
rejected in all cases, at P < 0.05

PaciWc Temperate PaciWc Subtropical Southern Gulf Central Gulf Northern Gulf

PaciWc Temperate FST <0.001 <0.001 <0.001 <0.001

�ST <0.001 0.015 <0.001 <0.001

PaciWc Subtropical 0.1329 0.002 <0.001 <0.001

0.1063 0.003 <0.001 <0.001

Southern Gulf 0.1956 0.0912 <0.001 0.001

0.1072 0.1443 <0.001 0.003

Central Gulf 0.2418 0.1475 0.1089 0.032

0.2228 0.2462 0.2191 0.024

Northern Gulf 0.1500 0.0954 0.0619 0.0243

0.1020 0.1398 0.1002 0.0446
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haplotypes derived from H29 and H34, including haplo-
types H40 and H41, which link Z. californianus with
Z. wollebaeki. Furthermore, haplotype diversity was highest
in all three Gulf populations.

The Gulf of California in its current conWguration has
been in existence since »3.7 Ma (Jacobs et al. 2004), and
therefore a possible interpretation for the patterns of haplo-
type diversity in our MSN is that the Gulf was initially
colonized by eastern North PaciWc animals, which later
dispersed to Galápagos. An alternative and more plausible
interpretation involves a more complex scenario in which
North PaciWc marine fauna colonized and evolved in isola-
tion inside the Gulf during times of inhospitable conditions
in the outer PaciWc coast (e.g. Bernardi et al. 2003; Jacobs
et al. 2004) resulting from strong oscillations in upwelling
and sea level such as occurred around the middle Pleisto-
cene transition peaking »0.9 Ma (Clark et al. 2006; Law-
rence et al. 2006). Once conditions became favorable again
in the late Pleistocene, animals from the Gulf recolonized
the PaciWc, giving rise to the present-day populations
(Jacobs et al. 2004). Under this “refugium” hypothesis for
North PaciWc marine fauna, Zalophus populations from the
Gulf of California would have been the source for both the
Galápagos and PaciWc populations. An analogous vicariant
process occurring in insular and continental refugia south
of the North American and Eurasian ice sheets during the
Plio-Pleistocene has been invoked by Harlin-Cognato et al.
(2006) to explain the phylogeography of Steller sea lions.

Haplotypes in the clusters derived from H29 and H34
would have evolved in the Gulf of California during the
time when the species was restricted to this area. The
absence of H29 and H34 in the Gulf could be explained by
lower frequencies in the Gulf or by their disappearance
after migration had occurred back to the PaciWc. The lower
haplotype diversity found in the PaciWc would further sup-
port a more recent origin of PaciWc populations. This “refu-
gium” hypothesis is also supported by a recent
morphological study across the breeding range of Zalophus,
reporting a cline in the presence of double or triple roots in
the postcanines and/or the presence of a sixth postcanine,
such that the highest frequencies occur in Galápagos
animals, followed by those in the Gulf of California and,
Wnally, those in the PaciWc (Aurioles-Gamboa et al. 2000).

Population structure within California sea lions

The pattern of genetic variation found in this study not only
conWrms previous results regarding the genetic isolation of
sea lions in the Gulf of California (Maldonado et al. 1995;
Bowen et al. 2006), but it also provides evidence for latitu-
dinal structuring in the PaciWc populations. Further, the
high degree of genetic diVerentiation among the Wve puta-
tive populations identiWed (FST = 0.024–0.242, �ST =

0.045–0.246; Table 3) is up to Wve times higher than that
reported for Steller sea lions (FST = 0.05, Bickham et al.
1996) in most pairwise comparisons. This population-level
diVerentiation is in general agreement with the studies of
population structure among California sea lions based on
cranial morphometrics (Zavaleta-Lizárraga 2003), feeding
habits and trophic level (García-Rodríguez and Aurioles-
Gamboa 2004; Porras-Peters et al. 2008), heavy metal con-
centrations (Elorriaga-Verplancken and Aurioles-Gamboa
2008), diseases (Szteren 2006), and population trends
(González-Suárez et al. 2006; Szteren et al. 2006), although
some of the boundaries vary among the various studies.
Despite the well-known capability of individual California
sea lions for long-distance travel, our population structure
results are consistent with the strong philopatric behavior
displayed by the species, not only in reproductive females
(Riedman 1990) but also in males (Hernández-Camacho
et al. 2008a). Additional evidence for a low reproductive
exchange among rookeries is the large diVerence in chlori-
nated hydrocarbon contents in the blubber of California sea
lions from Southern California, USA, and Ensenada, Baja
California, México (Kannan et al. 2004; Del Toro et al.
2006), separated by only 350 km.

Ecological studies of Z. californianus (García-Rodríguez
and Aurioles-Gamboa 2004; Espinosa de los Reyes 2007;
Porras-Peters et al. 2008) and Z. wollebaeki (Wolf et al.
2008) suggest that inter-population diVerentiation may be
related to diVerences in feeding habits. “Northern Gulf”,
“Central Gulf”, and Galápagos populations have foraging
distances from the rookeries of ·20 km (García-Rodríguez
and Aurioles-Gamboa 2004; Kooyman and Trillmich 1986;
Villegas-Amtmann et al. 2008). In contrast, foraging dis-
tances in San Miguel Island (“PaciWc Temperate” popula-
tion) have been reported at 70–100 km (Antonelis et al.
1990; Melin and DeLong 1999). It is likely that these diVer-
ences are driven by prey distribution and abundance in
diVerent oceanographic regimes.

The boundaries among Z. californianus populations are
consistent with the major oceanographic patterns in the
region. The “PaciWc Temperate” population is contained
within a recirculation cell of the California Current known
as the Southern California Eddy, and is separated from the
more open, upwelling-dominated coast of northern Baja
California by the Ensenada Front (Hickey 1998; Santamaría
del Ángel et al. 2002). About halfway down the peninsula,
and within the range of the “PaciWc Subtropical” population,
the prominent headlands of Punta Eugenia and Cape San
Lázaro induce Xow instabilities that result in dynamic eddies
and jets forming at these locations (Hickey 1998; Espinosa-
Carreón et al. 2004). Inside the Gulf of California, four
oceanographic regimes can be distinguished: (1) the shallow
northern Gulf, (2) the tidally energetic islands and sills
region, (3) the central deeper gulf, and (4) the mouth region
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(Kahru et al. 2004). While we did not sample the small
breeding rookeries found in their third region (San Pedro
Mártir, San Pedro Nolasco and Farallón de San Ignacio), our
“Northern Gulf”, “Central Gulf”, and “Southern Gulf” pop-
ulations correspond well with the Wrst, second, and fourth
oceanographic regions of Kahru et al. (2004), respectively.

The behavior of adult females is a strong force in the
process of population isolation. In California sea lions,
females return to their natal beach to give birth and nurse
their young. Lactation may last for a year or more (Peterson
and Bartholomew 1967; Newsome et al. 2006), and a
female may give birth to a pup each year almost without
interruption from 4 to 12 years of age (Hernández-Camacho
et al. 2008b). This long and nearly continuous period of
maternal investment is the driver for the observed pattern of
philopatry in adult females, who, needing to forage and
return expeditiously to nurse their pups, develop speciWc
feeding habits and strategies adapted to local conditions, as
many recent ecological studies have shown (García-Rodrí-
guez and Aurioles-Gamboa 2004; Espinosa de los Reyes
2007; Porras-Peters et al. 2008; Wolf et al. 2008). The vari-
ation in the oceanographic regimes noted above correlate
well with the sea lion population clusters identiWed in this
study. Thus, it is likely that the oceanographic regions
within the eastern North PaciWc support diVerent feeding
grounds to which females, with dispersal constrained by the
need to return to the rookery, have adapted for a period
long enough to create the present genetic structure.

Management implications

It is important to consider the vulnerability of the diVerent
Zalophus population for management purposes. Special
attention is warranted for sea lions in the Gulf of California
because of their lower abundance (31,393, Aurioles-Gamboa
and Zavala-González 1994) and greater population
structure when compared to PaciWc populations (75,000–
85,000 in México and 238,000–241,000 in the United
States, Lowry and Maravilla-Chávez 2002). Also, “North-
ern Gulf” and “Central Gulf” populations may be especially
vulnerable because of higher reported frequencies of temp-
oro-mandibular osteoarthritis and mandibular osteomielitis
compared to colonies along the western Baja California
coast (Aurioles-Gamboa et al. 2009). The high frequency of
tooth erosion in sea lions of the Gulf of California (Labrada
et al. 2007) may be linked to these diseases. Leptospirosis,
a sea lion disease caused by the bacteria Leptospira interro-
gans, results in early births, abortions and kidney problems,
and occurs in highest frequencies in the northern Gulf of
California (Acevedo-Whitehouse et al. 2003). Along the
PaciWc coast, the highest susceptibility to hookworm
(Uncinaria spp.) infection has been shown to be an impor-
tant cause of pup mortality at San Miguel Island (“PaciWc

Temperate” population) (Acevedo-Whitehouse et al. 2006),
which is one of the two largest California sea lion breeding
rookeries (the other being San Nicolas Island) and produces
nearly 42% of pups in the United States population (Lowry
and Maravilla-Chávez 2002). These results indicate that
more studies about diseases in natural populations are
needed in order to ascertain the extent to which selective
mortality occurs and what the consequences are with
respect to the maintenance of genetic variation of the popu-
lation (Acevedo-Whitehouse et al. 2006).

The strong intraspeciWc structure within the California sea
lion, with Wve distinct populations in the eastern North
PaciWc, probably reXects the adaptability of the species to
local and regional environmental conditions. These popula-
tions may be considered diVerent “Management Units,” a
fundamental concept for proper short-term management and
the logical unit for population monitoring and demographic
studies (Moritz 1994). The support for Z. wollebaeki as a sep-
arate species is also timely, given the current concerns over
the impacts of climate variability, widespread disease and
human interactions on a rapidly declining population (Salazar
2002; Wolf et al. 2007; Salazar and Michuy 2008). EVorts
toward strengthened conservation strategies for this species
should be a priority within local and regional plans.
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